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A three-dimensional approach to the 
electrolytic degradation of solid electrolytes 
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A semiquantitative three-dimensional analysis of the electrolytic degradation of solid 
electrolytes is presented. This analysis leads to critical current densities that are in accord 
with experimental observations in contrast with the two-dimensional models which lead 
to a discrepancy of three orders of magnitude. The effect of microstructure has also been 
incorporated into the analysis. 

1. Introduction 
It is well known that under certain conditions 
solid electrolytes are subject to a type of degrada- 
tion which manifests itself in the form of thin 
metallic filaments originating from the ion- 
neutralization surface. While this type of degrada- 
tion can occur in all cationic conductors, it has 
been studied extensively in sodium /3- and fl"- 
aluminas due to their use as sodium ion conductor 
membranes in the sodium-sulphur battery. 
Specifically, it has been found that under the 

conditions of charging, sodium filaments often 
originate at the liquid sodium-/3"-alumina inter- 
face and propagate through the thickness of the 
solid electrolyte eventuaUy leading to the shorting 
of the battery. Experimental observations [1] 
indicate that the sodium filaments are in the form 
of thin ribbons. 

Several researchers have attempted to model 
tile process of degradation. Armstrong et al. [1] 
proposed that sodium ions in the vicinity of a 
sodium filled surface crack are attracted towards 
the crack. Sodium ions are neutralized at the 
metal/solid electrolyte interface and the sodium 
metal formed flows towards the open end. The 
essence of the model given by Armstrong et al. 
[1] lies in the premise that when the pressure 
generated exceeds the critical pressure so that the 
Griffith equation is satisfied, degradation ensues. 

Concurrently, Richman et al. [2, 3] presented a 
model wherein the process of degradation was 
presumed to occur by a stress corrosion mech- 
anism. In the approaches by Armstrong et al. [1] 
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and Richman et al. [2] it was assumed that the 
crack had a fixed (arbitrarily) thickness and that 
tile equations of two-dimensional fracture mech- 
anics were applicable. However, the assumption of 
constant thickness is incorrect within the formalism 
of the theory of linear elasticity. Subsequently, 
Shetty et al. [4] removed the restriction of fixed 
crack thickness. Using the method of Sneddon and. 
Das [5], they determined the shape of the crack 
under the conditions of fluid flow. As a first 
iteration, Shetty et al. [4] assumed the crack to 
consist of a flat parallel sided channel (thickness 
of which is determined self-consistently). For a 
rectangular channel of constant cross-section, the 
pressure head varies linearly with length. There- 
fore, assuming a linearly varying loading on the 
surface of the crack, Shetty et al. [4] determined 
the shape of the crack which turned out to be 
nearly flat and parallel up to about 0.81 where l 
is the crack length. Thus, the loading generated 
by the fluid flow and the resultant crack shape 
were shown to be compatible to a first approxi- 
mation. (Recently, Feldman and DeJonghe [6] 
have attempted to solve this problem. However, 
in their analysis they assumed the crack to be of 
elliptical shape and for this shape they determined 
the pressure distribution, which is not linear but 
varies as t a n h - l ( x / l ) .  Although Feldman and 
DeJonghe [6] claim this to be a more accurate 
calculation, they have failed to recognize the fact 
that the crack shape is not elliptical under a 
pressure distribution P(x)  = Po ta nh-1 (x / l ) .  Thus, 
the problem solved by these authors is not self- 
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consistent and in fact the analysis given by Shetty 
et al. [4] is a higher order approximation.) The 
analysis by Shetty et aL [4] leads to a relation 
for critical current density in a natural way. For a 
typical flaw of length 100/am, the critical current 
density was of the order of 104Acm -2 (there 
is a numerical error in the calculations given in 
reference [4]). 

In a subsequent paper by Virkar [7], the ion 
focusing was incorporated by solving the Laplace 
equation for the appropriate boundary conditions. 
The critical current density, ier, for a typical flaw 
about 100~ln in length was once again about 
104 Acm -2 at 300 ~ C. This demonstrated that the 
exact solution to the Laplace equation made a 
minor difference in the calculated value of the 
critical current density ier. 

In all of the analyses on degradation of 13"- 
alumina, the crack geometry is assumed to be 
two-dimensional despite the fact that the fila- 
ments grow in the form of thin ribbons [1]. The 
primary reason for analysing the problem using a 
two-dimensional linear elastic fracture mechanical 
framework is the resulting simplicity. An exact 
solution to even the two-dimensional problem 
where the pressure generated is due to the hydro- 
dynamic effects is extremely complicated for the 
reasons enumerated in reference [4]. The three- 
dimensional problem is very complex if one is to 
attempt an exact analysis. The primary objective 
of this paper is to present a simplistic but a three- 
dimensional analysis. Through the analysis 
presented here which takes into account the 
physical processes occurring at the crack tip, 
Critical current densities above which degradation 
occurs are found to be two or three orders of 
magnitude smaller than heretofore calculated. 
While an exact calculation of i,= is not possible 
due to several complexities, the present analysis 
demonstrates that the degradation by the 
Poiseuille model is by far the primary mechanism 
of electrolyte failure. 

Another objective of the present paper is to 
include the effect of microstructure and the 
wetting characteristics of liquid sodium on /3"- 
alumina on the process of degradation. 

2. Theoretical 
2.1. Crack g e o m e t r y  
Experimental observations [1] (and the present 
work) show that sodium filaments which form at 
the liquid sodium-/3"-alumina interface resemble 

thin ribbons. Our objective is to examine the con- 
ditions under which these Naments grow. The 
problem is clearly three-dimensional and an exact 
analysis is extremely complicated. However, our 
primary objective is to obtain an estimate of the 
critical current density above which degradation 
occurs. A great simplification can be achieved 
based on Saint Venant's principle [8]. Before 
considering the actual degradation problem, let us 
examine the justification for simplifications we 
shall make in the analysis. 

Fig. la shows a linear elastic body containing 
a ribbon shaped crack of width 2c and length l 
lying in the x - y  plane (the length l is along the 
y-axis) with loading (uniform stress a) in the 
z-direction. The length of the crack, l, is smaller 
than the thickness of the plate, T. The geometry 
of the crack tip in the x - y  plane is assumed to be 
circular with radius c. The geometry of the crack 
shown in Fig. la closely resembles the actual 
filaments observed. 

Fig. lb shows a plate identical to that in 
Fig. 1 a with the exception that the crack extends 
through the thickness. This problem represents 
the usual two-dimensional plane strain problem. 
Finally, Fig. 1 c shows a plate identical to those in 
Figs. l a and b but without any crack. In the 
following we will assume that l is greater than 2c. 

Consider point A close to the edge of the crack 
as shown in Fig. l a. The point A' in Fig. l b is 
similarly located. As long as point A is far away 
from the tip of the crack (M), the state of stress 
at points A and A' will be nearly identical. This 
follows from Saint Venant's principle which 
postulates that the state of stress and strain at a 
point due to tractions applied at remote places 
depends only on the cumulative magnitude of the 
load and not on the details of the distribution. 
Thus, whether the crack extends through the plate 
or only part way through the plate is almost 
irrelevant as far as point A is concerned. There- 
fore, the state of stress as well as the crack open- 
ing displacement in the z-direction for the plate 
shown in Fig. 1 a is essentially identical to that of 
the problem shown in Fig. lb except for regions 
near the tip and beyond. Similarly for a point 
such as B in Fig. la, which is far from the crack, 
the state of stress (and strain) will be essentially 
identical to that for point B' in Fig. lc. 

If the externally applied stress reaches a 
critical value (Fig. i b), the crack would extend in 
the x - y  plane along the x-direction. Similarly, for 
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Figure 1 (a) A schematic showing a crack of length l and 
width 2c in an elastic body of thickness T (T> l) under 
a uniform tension a. (b) A schematic showing a similar 
elastic body as in (a) with a crack through the thickness. 
(c) An elastic body without a crack. According to Saint 
Venant's principle, the state of stress at A and A' as well 
as at B and B' will be similar. 

the plate shown in Fig. la ,  the crack would extend 
in the x-direction and not  in the y-direct ion 
[9, 10]. Thus, the dimension of  the crack that 
determines crack extension stress is 2c and not  I. 
This is an extremely important  consideration in 
that  the length of  the crack in the problem shown 
in Fig. l a  is immaterial with reference to failure: 
it is the width of  the crack, 2c, that  determines 
the strength. 

Fig. 2 represents a schematic of  a two-dimen- 
sional crack as assumed in the previous models. 
The crack goes all the way through the width. In 
such a case, the length l determines the strength 
of  the body.  It is not  difficult to see that  such a 
model  does not represent the actual crack in a 
solid electrolyte.  It was adopted in previous works 
for the resulting analytical simplicity. 
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Figure2A schematic of the two-dimensional crack 
assumed in previous models along with the current 
focusing area, 21w. 

2.2. Critical current density 
A schematic of the crack or filament is shown in 
Fig. 3 with the y-axis oriented along the crack 
length l. For the two-dimensional problem, the 
flux to a sodium filled crack was determined 
by Virkar [7] by solving the Laplace equation. 
A similar calculation was subsequently repeated 
by Feldman and DeJonghe [6]. These calcu- 
lations provide only a marginal improvement 
over the approximation forwarded by Richrnan 
and Tennenhouse [2] who assumed that a sodium 
ion that is at a distance less than 1 from the tip 
will be attracted to the tip. In the following we 
will make a similar assumption. Thus, it will be 
assumed that sodium ions in the circular region of 
area 7rl 2 (see Fig. 3) will be attracted towards the 

crack tip. With i as the average applied current 
density, the current entering the crack is 

~rq) = i~t 2 (1) 

and the volume rate of sodium metal will be given 
by 

_ z q ) v =  _ iTrt2vm (2) 
F F 

where Vra is the molar volume of sodium and F is 
the Faraday constant. (In the previous models 
which assume a two-dimensional crack, the sodium 
ions from the region 21w (Fig. 2) are attracted to 
the tip of the crack. Assuming the width w to be 
unity the volume flow rate of sodium will be 
(2 i lVm/F) . )  

Sodium metal will flow towards the open end 
and the corresponding pressure head between the 
tip and the open end, P0, will be determined by 
the Hagen-Poiseuille law. The local pressure and 
the corresponding crack opening displacement are 
interdependent. For regions not too close to the 
tip of the crack, the cross-section of the crack (in 
the x - z  plane) will be elliptical with semi-minor 
diameter, b, given by [ 1 1 ] 

(1 - - vZ ) cP  
b - (3) 

E 

where P is the local pressure, E is the Young's 
modulus of elasticity of ~"-alumina and p is the 
Poisson's ratio. The area of the elliptical cross- 
section is 7rbc. For a channel of elliptical cross- 
section, the Hagen-Poiseuille law is given by [12] 

(I = ~ l  ~(c 2 + b2)] (4) 

where I? is the volume flow rate, l is the length of 
the channel, and 77 is the viscosity. Now e >> b, 
therefore, 

7rPeb 3 
(7 - (5) 

4~l 

(In the corresponding two-dimensional models, the 
Poiseuille relationship is (Z=2b3P/3~?l.)  The 
pressure drop dP, between y and y - dy is 

dP - 7feb---- ~ dy 
or 

rlVmE3il  ~ 
dP = 2(1--v2)aFc4p a dy (6) 

where r/ is the viscosity of sodium. Integrating 
Equation 6 
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Figure 3 (a) A schematic showing a surface crack of length l and width 2e in a solid electrolyte. The dashed circle shows 
the region from which the current is focused to the crack. (b) Same as in (a) viewed along the arrow. Dashed lines 
indicate assumed flux lines. 

p4(y) = \(1 --v2)aF]~c 4] y (7) 

and thus P ( y )  o~ y 1/4 for a given crack length. For 
y = l, the maximum pressure which occurs at the 
tip is given by 

[ 2r2VmEal a ~1/4 ..1/4 
eo -- Id- 4l t ,  

Thus the pressure at the crack tip is propor- 
tional to l 3/4 in contrast with the two-dimensional 
model where Po is found to be proportional to 
l -u4 [4, 7]. For the crack geometry shown in 
Fig. 3, if the loading is uniform, the crack would 
extend in the x-direction. However, the pressure 
is not uniform and is in fact highest at the crack 
tip. It is thus reasonable to assume that the crack 
will extend in the y-direction, which is consistent 
with the experimental observation. The crack tip is 
assumed to be semicircular. The criterion for crack 
extension should depend upon the radius c and 
should be independent of l. The maximum pressure 
must occur at point M (Fig. 1 a, Fig. 2). Further- 
more, the magnitude of the pressure at M (in 
liquid sodium) must actually be greater than Po 
since the cross-sectional area near M (in the x - z  
plane) will be smaller than 7rbc. Due to the unavail- 
ability of the actual magnitude of pressure near M 
it will be assumed to be Po in the following. This 
will tend to overestimate i~r. The crack will extend 
provided the local pressure, Po, is greater than 

1 2 0 6  

some critical pressure, Per, which depends upon c 
via the Griffith relation, i.e. 

1 
Per cU 2 (9) 

Assuming that the Griffith equation for a penny- 
shaped crack is appropriate (actually the Per will 
be less than that given by the Griffith equation for 
a penny-shaped crack, since the crack is more like 
a half-penny crack), this would give an upper limit 
to Per and the resultant overestimate of ier. The 
corresponding Per is given by [11] 

[ ~rETc~, t m 
Per =  22d_-G2j] oo)  

When Po is equal to Pe~ crack extension will occur. 
Equating Equations 8 and 10, the critical current 
density is found to be 

The primary difference between Equation 11 
and previous equations is the incorporation of the 
crack width 2c in a natural way and the resultant 
different dependency of ier on l. In the previous 
two-dimensional calculations, ier cx 1/l while the 
present calculation leads to ier cx 1/l 3. The magni- 
tude of critical current density for a typical crack 
may now be evaluated. Taking v = 0.25, r /=  3.4 x 
10 -3 poise (at 300 ~ C), F = 96 487 coulombs tool -1, 



Vra = 23.7cmamo1-1, E = 2.07 x 1012dynescm -2 
and Ten = 5000 ergs cm-2, * we obtain 

104/c21 ampscm -2 ( l l a )  ic~ = 16.73 x ~13] 

with c and l in cm. 
To compare the results of the present model 

with the earlier two-dimensional models, crack 
dimensions have been chosen as before [1-4].  
For a crack length 100pm and width 60pro, the 
calculated value of ier is about 150.6Acm -2. A 
similar calculation based on the two-dimensional 
approaches given previously yields a value of 
ier ~- 3000 Acre -2. For a crack of length 200pm 
with 60pm width, the present calculation yields 
a value of i~r of about 18.8Acre -2 while the 
two-dimensional approach yields a value of ic~ ~- 
1500 Acm -2. The value of 2c = 60/~m chosen is 
a typical value often observed experimentally. It 
is important to recognize that although we have 
chosen the width 2c arbitrarily, the correspond- 
ing crack opening displacement is automatically 
built into the analysis. The present calculations 
clearly demonstrate the profound effect on icr 
when the three-dimensional nature of the problem 
is incorporated into the analysis. With reference 
to the three-dimensional problem, two important 
differences are (a) the failure stress does not 
depend upon crack length but rather on the minor 
dimension, crack width; and (b) the effect of ion 
focusing is greater in comparison with the two- 
dimensional problem (since in the two-dimensional 
problem, the focusing and the volume flow rate 
are proportional to 2l while in the three-dimen- 
sional problem they are proportional to (rd2/2c). 
Thus, when l >> 2c, the volume flow rate is greater 
in the three-dimensional case). Both of these 
effects conspire towards lowering the critical 
current density. 

It should be emphasized that the exact details 
regarding the geometry of the crack, the dynamic 
pressure distribution of the fluid flow and the 
resultant stress distribution in f-alumina are 
mathematically complex and beyond the scope of 
this paper. All that is possible here is to provide 
an order of magnitude calculation. The approach 
given here clearly shows that very reasonable 
values of ier result from this analysis. Experimental 
results (in the present investigation) have in fact 

shown that the icr at 300 ~ C is somewhere in the 
range of lOAcm -2 to 20Acre -2. Furthermore, 
other aspects such as wetting characteristics and 
microstructural effects tend to further reduce i~. 
Experimental results as well as these other factors 
are discussed in the following sections. 

2.3. Ef fec t  of  mic ros t ruc tu re  on 
degradat ion  

In the analysis presented so far, the crack was 
assumed to be in the form of a ribbon of width 
2c and length l. Pressure generated on the crack 
faces was determined based on the Hagen- 
Poiseuille law. In reality, the crack will not be flat 
and smooth (in the x -y  plane) as assumed in the 
analysis, but will be jagged due to the presence of 
grain boundaries and cleavage planes. Sodium 
formed at the tip must flow towards the open 
end through a jagged channel. Consequently, there 
will be a pressure head loss at every bend. Since 
the volume flow rate is controlled by the crack 
length 1 and the crack width 2c, and the pressure 
at the open end is nearly zero, the presence of 
bends would tend to increase P0 beyond that 
given by Equation 8. This should lead to a lower- 
ing of the critical current density. Let us assume 
that l is the length of the crack and 2c is the 
width. The crack consists of n segments, each of 
dimension D as shown in Fig. 4. Therefore, 1 = nD. 
However, the extended length of the crack (pipe) 
is /ex~ =//cos 0 = riD~cos O, with the length of 
each segment being D/cos 0. Over one segment, 
the crack opening displacement (b) may be 
assumed to be constant. The actual pressure distri- 
bution will be given by the one calculated pre- 
viously with the bend losses superimposed at 
every bend. The two contributions to the pressure 
drop between y and y -  dy, namely dPu) and 
dP(2 ), are due to the Poiseuille flow and the head 
loss at bends, respectively. 

Now, dP(1 ) is given by 

(12)  cosO] 

which is the same as Equation 6 except for the 
multiplication factor 1/cos 0. 

In order to estimate dP(2), let us assume that 
there are n bends in the crack. Thus, the number 

*On hotpressed fl"alumina, Virkar and Gordon [ 13 ] gave "Yeff ~ 15 to 20 J m-2. However, subsequent work on sintered 
samples yielded 3'eft ~ 5 Jm -~. 

1207 



Figure 4 A schematic showing the tortuous nature of a crack in a solid electrolyte. 

M 

of bends in length dy is given by n dy/l. The 
pressure drop at a bend is given by [14] 

PB = (13) 

where K is a constant depending upon the bend 
characteristics (e.g. angle), 12 is the volume flow 
rate, p is the density of  the fluid, and area is the 
cross-sectional area. Substituting for 17 and area 
(= 7rbc), 

KpV~E214i 2 
PB = 8F2(1 _ _  v2)2cgp2 (14) 

Since there are n dy/l bends in dy 

KpV2mE2l~i2n dy 
dP(2 ) = 8F2( 1 _ v2)2c4p2 (15) 

The net pressure drop between y and y -- dy is 

d P =  dP(1 ) -]- dP(2 ) ( 1 6 )  

Equation 16 can be easily integrated to yield 

3B B 3 2B 2 B4 In + 

(17) 
where 

A = ~VmE312i 
2(1 - -  v2)3Fc4 COS 0 

and 
Kp V~E213ni 2 

B =  
8F2(1 -- v2)2c4 

For a given crack width 2c, the critical pressure, 
Per, can be evaluated using Equation 10. This value 
is substituted for Po in Equation 17 and the corre- 
sponding current density i, which is the critical 
current density, can be evaluated numerically. 

A considerable simplification of  Equation 17 is 
realized by noting that {-A3/B4[ln(I+(B/  
A)Po)]} can be expanded as 

+\2821 o 

+ 4.4] Po s + . . .  (18) 

and that the first three terms of this expression 
cancel out with the first three terms of Equation 17. 
Furthermore, in the expansion of  Equation 18 
only the first five terms need be considered since 
for any reasonable current density, (B/.4)Po ~ 1. 
It is easily shown that 

( v)FTe~c cosO) ier = ~r2( l_  2 z 2 
8 VmE~Tl 3 

1 -- Kpn( l -- v2)4pSerc4 cos20 ] 

o r  

icr = icr(o) cos 0 --  ier(o) C os3 0 

Kpn (1 -- v2)4PSerc4 
X 

10r/2E412 (19) 

where i,~(0) is the critical current density for a 
straight crack. Equation 19 shows that there are 
two factors which tend to reduce the critical 
current density. The jagged nature of  the crack 
implies effectively longer crack length; this effect 
being introduced in the first term via cos 0. The 
other effect is the head loss at bends which is the 
second term in Equation 19. Numerical calcu- 
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lations indicate that the second term is consider- 
ably smaller than the first term for reasonable 
values of  n and K. For example, if n = 104 cm -1, 
i.e. one bend per micrometre, the second term is 
three orders of magaitude smaller than the first 
term. Therefore, it is concluded that the grain size 
will have little effect on i~. However, with increas- 
ing grain size, it is to be expected that c will 
increase. Thus, there could be in fact an increase 
in ier with increasing grain size. This is of some 
significance since often the objective of a processor 
is to fabricate fine grained ceramic. With reference 
to solid electrolytes such as /3"-alumina, fine 
grained microstructure may not be necessary; and 
in fact a somewhat coarser microstructure may be 
desirable. 

The tortuosity of the crack, however, does 
affect the critical current density through the term 
of cos0. For example, if 0 = 45 ~ the critical 
current density for a crack length 200pm and 
width (2c) 60pro, is 12.2Acm -2 instead of 
18.8 Acm -2 for a straight crack. 

3. Experimental procedure and results 
Bar shaped specimens of/3"-alumina were sintered 
to near theoretical density (> 98%) by the pro- 
cedure described previously [15]. A small hole 
of about 1.5 mm diameter was drilled along the 
length of the specimen to a depth of about i cm. 
An e-alumina tube was sealed to each specimen 
as shown in Fig. 5. A fine copper wire was intro- 
duced through the alumina tube such that the tip 
of the wire was in electrical contact with /3" 

alumina at the bottom of the hole. A vacuum torr 
fitting was attached to the other end of the 
a-alumina tube to which a copper tube was 
connected. The copper tube was subsequently 
evacuated. The bottom end of the ~"-alumina 
specimen was dipped in molten NaNOs + NaNO2 
eutectic at 300 ~ C. The samples were then elec- 
trolysed using a d.c. power supply (see Fig. 5). 
Initially, the current density was kept very low. 
The c~-alumina tube with the copper wire as an 
electrode was seen to fill with sodium. Slowly 
the current was increased in increments of 5 mA. 
After 5 min intervals it was increased in increments 
of 10 mA. Above a certain current for agiven speci- 
men, sodium filament could be seen to initiate 
from the bottom of the hole and grow. The 
corresponding current density was determined 
based on the diameter (area) of the hole. Several 
such experiments were conducted. The current 
density above which degradation was observed was 
between 10 and 20Acm -2 which is quite con- 
sistent with the theoretical calculations presented 
here. After the experiment the samples were 
ground to observe the crack in different sections. 
One such section is shown in Fig. 6. The crack is 
filled with sodium, which reacts with atmosphere 
on exposure. It should be noted that this crack is 
not in its initial stages of propagation. It is difficult 
to locate the critical crack before it propagates. 
However, the photomicrograph does indicate that 
the assumption of a ribbon shaped crack has a 
sound basis. Furthermore, experimental observa- 
tion clearly shows that the filament grows in length 
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Figure 5 Experimental apparatus used for 
determining ier in r at 300 ~ C. 
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Figure 6 Photograph of falu- 
mina surface which was cut 

perpendicular to the direction 
of filament growth. A section 
of the sodium filled filament 
can be seen. 

with little increment in width. Thus, the assump- 
tion of 2c nearly constant appears reasonable.* 

4. Discussion 
Semiquantitative but three-dimensional analysis of 
the solid electrolyte degradation problem presented 
here clearly demonstrates the essential features of 
the filament propagation. The critical current den- 
sities that result from the analysis given here are 
entirely consistent with experimental observations. 
While an exact analysis of the three-dimensional 
problem is mathematically complex, the present 
analysis provides some insight into the physical 
aspects of the degradation process. Although the 
analyses presented by Shetty et  al. [4], Feldman 
and DeJonghe [6] and Virkar [7] are essentially 
correct within the formalism of the two-dimen- 
sional problem, these analyses do not adequately 
describe the actual degradation process. This is 
clearly evidenced by the fact that extremely high 
values of critical current density result out of these 
analyses which are not in accord with experimental 
observations. On the other hand, the filament 
geometry assumed in the present analysis as well 
as the resulting i= values are in good agreement 
with experimental observations. 

In the analysis presented here, when the pressure 
at the tip reaches critical pressure based on a 
penny-shaped crack of diameter 2c, the crack is 
assumed to extend along the length of the crack 
(along y, Fig. la). However, the stress required for 
the extension of a crack of dimension 2c based 

on a plane strain Griffith equation is in fact less 
than that for a penny-shaped crack. This would 
imply that the crack will grow in the x-direction as 
well near the tip. The implication, therefore, is 
that as the crack extends in the y-direction, it 
also extends in the x-direction. However, as 
the crack extends in the x-direction, the cross- 
sectional area (in the xz  plane, Fig. la) increases 
leading to the lowering of pressure. Consequently, 
it should not extend much in the x-direction. 
Furthermore, the magnitude of the pressure at 
the tip of the crack (point M in Fig. la) would be 
considerably greater than P0 calculated here for 
the reasons discussed earlier. Although the details 
of the crack extension process are difficult to 
evaluate it is gratifying to note the experimental 
observations that the filaments almost always grow 
along the length with very little widening in the 
x-direction (Fig. la). 

The effect of nonwetted regions or the regions 
of large charge transfer resistance can now be 
assessed in light of the present analysis. Specifi- 
cally, it was shown by Virkar etal.  [16, 17] that 
current density near nonwetted regions can be 
considerably higher than the applied current 
density. In reference [16], supporting experimental 
evidence was provided. Current intensification by 
a factor of two to three can be easily realized in 
such regions. It has been argued [6] however that 
once a crack in such a region grows to some 
length, it no longer experiences a high enough 
current density and therefore should arrest. This 

*The present analysis will be applicable even if 2c is not constant, as long as the rate of growth of 2c is much less than 
the rate of growth of 1. 
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conclusion could perhaps be justified on the basis 
of  the two-dimensional model in which ier was 
found to be proportional to 1-1 . However, the 
present analysis shows that ier ccl -3. Thus, even if 
the crack grows out of  regions of locally high 
current densities, as the critical current density 
rapidly drops with increasing l, continued propa- 
gation is to be expected and the crack should not 
arrest. This is in accord with the experimental 
observations. Other evidence of the effect of 
nonwetting is obtained from the work of Richman 
and Tennenhouse [2] who observed a critical 
current density of the order of 1 to 1.5Acm -2 
when mercury was used as a cathode (subsequently 
we have obtained similar results using mercury as 
a cathode). However, when sodium is used as a 
cathode, current densities in excess of 5 A c m  -2 
can be passed without any signs of degradation. 
The main distinction between these two sets of  
experiments is that mercury, which was used as a 
cathode, does not wet /3"alumina properly and 
exhibits a very high charge transfer resistance. 
Recent calculations of  Wright e t  al. [18] who 
used the conformal method of Papamichael and 
Whiteman [19, 20] to evaluate current concen- 
trations near nonwetted regions in electrolytes of 
finite thickness show that nonwetted regions on 
the surface of solid electrolyte have a rather large 
effect. 

Some researchers [21] have used acoustic 
emission methods to determine critical current 
densities and have obtained acoustic signals at 
rather low current densities (several mA cm -2) and 
therefore have interpreted that the degradation 
process must have ensued. However, no evidence 
was presented to indicate that degradation had 
actually begun. Ample evidence is available which 
shows that current densities in excess of  1 to 
2Acre  -2 can be passed for prolonged periods of 
time without failure suggesting that ier is at least 
greater than 1 to 2Acre  -~. The utility of the 
acoustic emission method to detect the initiation 
of the degradation process is therefore question- 
able. Some authors have claimed that degradation 
of f-alumina may occur by the precipitation of 
sodium metal at the operating temperature due to 
either electron injection [22] or gradient in trans- 
ference number [23]. Presumably, the sodium 
deposited develops sufficient pressure to cause 
ultimate failure of the electrolyte. However, no 
experimental evidence has been provided which 
shows occurrence of failure by this mechanism 

(the so-called mode lI). Furthermore, these 
authors have failed to recognize that if a sodium 
filled pore leads to a crack formation, the crack 
will invariably extend in one direction, not both. 
In that case, if the crack opens up on the sodium 
side, further extension will have to occur by the 
Poiseuille pressure model as described in this 
paper. A crack opening up on the sulphur side 
should remain benign. Thus, in light of the above 
reasons, it is unlikely that the so-called mode II 
would lead to electrolyte failure even though 
sodium precipitation may be observed. 

5. Conclusions 
The three-dimensional analysis presented here 
leads to critical current densities which are in 
accord with experimental observations. The degra- 
dation of solid electrolytes, and in particular that 
of/~- and (3"-alumina, under electrolytic conditions 
can be adequately described by the Poiseuille 
pressure model in a natural way. 
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